skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Doyeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Long-period underside SS wave reflections have been widely used to furnish global constraints on the presence and depth of mantle discontinuities and to document evidence for their origins, for example, mineral phase-transformations in the transition zone, compositional changes in the mid-mantle and dehydration-induced melting above and below the transition zone. For higher-resolution imaging, it is necessary to separate the signature of the source wavelet (SS arrival) from that of the distortion caused by the mantle reflectivity (SS precursors). Classical solutions to the general deconvolution problem include frequency-domain or time-domain deconvolution. However, these algorithms do not easily generalize when (1) the reflectivity series is of a much shorter period compared to the source wavelet, (2) the bounce point sampling is sparse or (3) the source wavelet is noisy or hard to estimate. To address these problems, we propose a new technique called SHARP-SS: Sparse High-Resolution Algorithm for Reflection Profiling with SS waves. SHARP-SS is a Bayesian deconvolution algorithm that makes minimal a-priori assumptions on the noise model, source signature and reflectivity structure. We test SHARP-SS using real data examples beneath the NoMelt Pacific Ocean region. We recover a low-velocity discontinuity at a depth of $$\sim 69 \pm 4$$ km which marks the base of the oceanic lithosphere, consistent with previous work derived from surface waves, body wave conversions, and ScS reverberations. We anticipate high-resolution fine mantle stratification imaging using SHARP-SS at locations where seismic stations are sparsely distributed. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2025
  3. Abstract The Hadley cell response to globally increasing CO 2 concentrations is spatially complex, with an intensified rising branch and weakened descending branch. To better understand these changes, we examine the sensitivity of the Hadley cell to idealized radiative forcing in different latitude bands. The Hadley cell response is, to first order, governed by the latitudinal structure of the forcing. The strengthening of the upward branch is attributed to tropical forcing, whereas the weakening of the descending branch is attributed to extratropical forcing. These direct radiatively-forced Hadley cell responses are amplified by changes in atmospheric eddy heat transport while being partially offset by changes in gross moist stability and ocean heat uptake. The radiative feedbacks further modulate the Hadley cell response by altering the meridional atmospheric energy gradient. The Hadley cell projections under global warming are thus a result of opposing – and thus compensating – effects from tropical and extratropical radiative forcings. 
    more » « less
  4. Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 . 
    more » « less